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Bicovariant differential calculi on GL; ,(2) and quantum
subgroups
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Institut fiir Theoretische Physik, D-37073 Gottingen, Federal Republic of Germany

Received 6 January 1993

Abstract. In a recent paper all bicovariant differential calculi on the two-parameter gquantum
group GL; (2} were determined. In this work we elaborate some of their properties and discuss’
relations with work by other authors. Furthermore, we show that there are two different ways in
which bicovariant differential calculi on GL,4(2) (where p = ¢) induce corresponding calculi on
the quantum subgroup SL, (2). It is shown that on SL,(2) there are only two different bicovariant
differential calculi, From these one obtains the 4D2 caleuli on SU,(2). The classical limit of
the two differential calculi on SL,(2) is investigated revealing a relation with recent work on
deformed differential catenli on commutative (function) algebras,

1. Introduction

Groups play an important role in the formulation of physical theories and in solving
mathematical problems arising in physics. Quantum groups can be viewed as generalizations
of ordinary groups (in the sense of Hopf algebras) and it is of interest to explore their possible
relevance in physical contexts. .

Differential geomefry on Lie groups enters physwal theories in various forms. The Lie
algebra is represented as the algebra of left- (or right-) invariant vector fields on the group.
In field theories with an action invariant under a Lie group these vector fields (‘currents’)
are related to conserved charges via Noether’s theorem. In many physical models the (left-
or right-invariant} Maurer-Cartan 1-forms on a Lie group play a central role. These notions
can be carried over to quantum groups [1]. The quantum analogues of left-invariant vector
fields are related to non-local currents and conserved charges in two—d1mens1onal quantum
field theories.

Differential calculus on quantum groups enters the formmlation of gauge theory with
quantum groups [2,3]. It is central in the approach [4,5] towards ‘g-gauge theory’ and
‘g-gravity’ by ‘softening’ a quantum group (analogous to the corresponding procedure in
the case of group manifolds [6]). Examples of ‘quantum spaces’ on which quanturn groups
act are obtained as ‘quantem coset spaces” and inherit-a differential calculus from that on the
corresponding quantum group [7]. Differential calculus is the very basic structure needed
to formulate dynamics on ‘quantum spaces’. )

A general theory of (bicovariant) differential calculus on quantum groups has been
developed by Woronowicz [1]. He gave two examples of bicovariant differential calculi
on SU,(2y which were called the 4D, calculi [1] (see also [8—10}). - Since then a large
number of papers has appeared dealing with examples of bicovariant differential calculi
on special quantum groups or with approaches to define ‘preferred’ bicovariant calculi on
certain classes of quantum groups. Formulations of bicovariant calculi on quantum groups
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with an R-matrix were given in [2,9, 11-14]. A formalism described in [15] was used in
[16, 17] to define bicovariant differential calculi on quantized simple Lie groups (see also
[5,18-21]). In [22,23] special differential calculi on the quantum group GL,,(2) were
constructed from special differential calculi on a ‘quantum plane’ on which the quantum
group acts (see also [14,24,257]). Some of them turned out to be bicovariant. A recipe for
the definition of bicovariant differential calculi on more general algebras has been given in
[26].

In {27] al bicovariant differential calculi on the two-parameter quantum group GL, 4(2)
were found. They form a family which depends on an additional parameter sT. For s =0
one recovers two differential calculi which have already been found [22] and which can be
expressed in terms of the R-matrix of the quantum group [13, 14]. The knowledge of all
bicovariant differential calculi in the example of the quantum group GLj ,(2) allows us to
relate various approaches and to clarify how and to what extent they work. In particular,
we obtain some results concerning the relation between bicovariant differential caleuli on
GL;,4(2) and calculi on quantum subgroups.

A summary of those results from [27] needed for our discussion iz given in section 2
with some improvements and additional material. In [13,28] questions have been raised
concerning the consistency of the differential algebra for s # 0. This will be addressed in
section 3.

In section 4 we discuss how to obtain a differential calculus on the quantum subgroup
SL4(2) from a differential calculus on GL,(2) (where p = g} (see also [19, 20]).

Section 5 briefly discusses the quantum subgroups Uj ,(2) and SU,(2) and how the 4D
calculi on SU,(2) [1] are recovered from our results. Section 6 contains some conclusions.

2. Bicovariant differential calculi on GL,; ,(2)

The quantum group GL, ,(2) is the Hopf algebra 4 generated by a, b, ¢, 4 satisfying the
commutation relations

ac = ged bd = qdb ad =da+(p—1/pbc oD
bc=(g/p)ch ab = pba ¢d = pdc. '

and the unit 1. Coproduct and counit are given byi
Af@ by [(aQ@a+b®c a®@b+b®d a by _(1 0 2.2)
c d) " \c®a+d®c c@b+d®d “Ne a) o1 :

and- the antipode is determined by

S(“ b):'p-‘( d ‘b/‘l)=( d ‘b/f’)'p-l 2.3)
c d —gc  a —pc a
where D = ad — pbc = da — g~ be. In addition, AN} =1@ 1, e(I) =1 and S(1) = 1.
The central object of (first-order) differential calculus is the exterior derivative
d: A— AYA) = space of 1-forms 2.4)

} p, g and s are complex nombers,
f We use a compact notation for Alg) =a®a+ o ®c et
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satisfying the Leibniz rule
d(FB)y = AR+ fdh  Yfhe A @25

The space of 1-forms A'(A) is generated as an .A-bimodule by the differentials of a, b, ¢, d.
To specify a (first-order) differential calcuius one has to prescribe {consistent) commutation
relations between a, b, ¢, d and their differentials.

A left-coaction Ag 1 A'(A) - A® A'(A) extends A as a bimodule homomorphism
to 1-forms such that

A (0 @Y _(a bo(da &) _(e@da+b@dc a@db+b®dd
“lde dd)T\e d de dd) T\ c®da+d®@dc c@db+d®@dd )"
(2.6)

In the same way a right-coaction Ag : A{A) - A'(A) ®74 is a bimodule homomorphism

with
da db\ “fda dBY . [ a b
ﬁ"R(dc dd)_(dc dd)®(c d)' | @7
The existence of Ay and A depends on the commutation relations between a, b, ¢, d and
their differentialst. If both exist, the (first-order) differential calculus is called bicovariant

[1].

Assuming the existence of Ap, there is a basis of (left-coinvariant) Maurer—Cartan
I-forms 0% in A'(A) given by

gl g2 a b a b
(93 94)_S(c d)d(c d)' (2.8)
Commutation relations between the generators of 4 and their differentials can be expressed
in terms of the Maurer—Cartan 1-forms:

8% f = e(f)Ket YfeA (2.9)
Compatibility with A, leads to [1,27]
a b a bB\{A B -
e(ta)-aes) 10
where A, B, C, D are 4 x 4 matrices (with complex entries). Consistency of (2.9) requires
O(fh)y = (f)Bh) which means that 4, B,C, D have to form a representation of
a, b,c,d. (2.9) and (2.10) imply
8%a = (@A¥ +bCE)0* 8%p = (aBf +bDf)8" (2.11)

and the corfesponding relations with a replaced by ¢ and b replaced by d.
Let us recall the following result from [27].

1 In the case of a Lie group left and right coaction reformulate the left and right multiplication on the group. This
is explained in detail in [5].
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Theorem 2.1. Let r .= pg # 0,—1%. Bicovariant (first-order) differential calculi on
GLp,¢(2) are given byf

(AL 0 0 5 [0 B} 0 0
A= 0 g8 O 0 B= 0 0 0 9
“lo o g o VB o0 0o B
\4t 0 0 1-rs \o & 0 o (2.12)
o 0 B 0 (1—s 0 0 D '
c=|@pB 0 0 (a/p)B p=| o ¥ (:3 g
0 0 0 0. 0 P
\ o o0 B o \rs 0 0 D
where
B=1+Al=rs)/(1+7)
At =r(1—5) —[2r + (r = DAY+ 720 — D51/ +7)
Bl =—(1—rAl +r%)/(1+7)
B} = pl(1+ Al +r2%)/(L+r) —1+5]
1
B?;=;{r(1+A{+s)/(1+r}“1+S1
B} =~ — Al +rs)/(1+7)
D} = ~(1=5) = 2+ (1 = DAl +r(r = Dsl/0 +7)
Di=Al+(1-nr)s (2.13)
and

(AD? - —i—[l-i—rz—(l r = rSJAL L= A+ 2r = Ds = (L4 r + 7952 = 0.
(2.14)

For r 1 these formulae determine ol bicovariant differential calculi on GL, 4(2)§.

Any set of functions A}(r) and s(r) which solves (2.14) determines a bicovariant
differential calculus on the quantum group GL,.(2). In terms of the differentials, the
commutation relations (2.9) for the bicovariant differential caleuli in theorem 2.1 read .

daa = (Al + spr*D'be)ada — sD"a*(ge db + pbdc — a dd)
1

dab = pl(r2s+ A 4+ 1) /(1 +ry+sprD~ belb da—[(rPs —r Al + 1) /(A +r)+sprDbcladb
— s(p/g)D ab(pbdc — add)

T The equations (2.13) only make sense when r = 0, —1, For some differential caleuli the limit towards these
values of r may exist, however.

% A closer inspection of the exceptional case where A} + Ai — (1 + 7} # 0 which appeared in the analysis in
[27, p 1721], shows that the additional assumption of a classical limit made there is unnecessary.

§ For r = 1 there are additional calculi [27].
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dac= q[(r?'s+A}+ D/(1+r) -I—sprD'lbc]cda—[(rzs—rA;+1)/(1+r)+sprD_1bc]a de
—5(q/p)D'ac(ge db — add) '
dad =[1—s(1 — prD7be)ld da
— (1/NI(r?s — rAl + /(1 + ) — sQ1 — prD~'be)(ge db + pb dc)
+ (/D[ —rAl + DA = 1) /(1 +7r) — 51 — prDbc)]add
dba = [(r%s + Al — /(1 + r) +sprD~'bclbda
— (/P —r AL —r)/(L+ 1) + sprD”'beladb
— (5/qYD™ab(pbdc — a dd)
dbb = s(p/g)*D b (rdda — pbdc 4 add) + [A} = s(r + pD™bc))bdb

dbc = g[(ris+ Al —r)/(1+r) +s(L+ pD ' be)ld da+(g/p)[1 —s(L+7 + pD~"bc)]c db
—s(l4+r+4pD be)bde+(1/ p)(rs+r Al —1)/(1+r)+s(1+pD~bc)ladd
dbd = sp?D ' db(gdda — bde) — g[(rs — Al — )/(1 +r) + (s/q)D  bcld db
— % —rAl 4+ 1)/(L+7r) = (s/7)(r + pD'bc) b dd
dea=—(s/p)D lac(gedb —add) + [(r%s + A} —~ /(1 +7) +srpDlbclcda
' — (Y% — rAL = r)/(1 + r) +s5rpD " belade
deb = pl(ris + Al = r} /(1 +7) +s(1 + pD~'bc))d da
~s(r + 1+ pD~lbc)edb + (p/q)t — s(r + 1+ pD~'bc)lbde
+ (U)(rs +rAl = D/ +r) + 50 + pD ' be)]add
dce= s(q/p)z’D‘lcz(rd da —gcdb+add) + [A{ —s(r + pD'Ibc)]cdc
dcd =5(¢*/pYD " cd(pdda — cdb) — pl(rs — Al — D/(1+ 1) + (s/g)D bcld de
— [ = r Al + /A +7) = (/7 + pD'be)]c dd
dda=—[(r@ls+ Al —r)+ (rs = AL+ 1)/ + 1) —spD ' bcld da
+ [r%s + AL = 1)/ (L + 1) = (s/g)D " bcl(ge db + pb dc)
+ 1 —s(r— (1/g)D  bc)a dd
dd b =s(p/q)*D 'bd(gd da — bde) —[(rs — A} + 1) /(L +7) + (s/g)D ' bcld db
— (/I(rs — rAl = r}/(1+7) = (s/r)r + pD 7 be) )b dd
ddc = s(g/p)*D cd(pd da — cdb) — [(rs — AL + 1)/ (L+7) + (/@)D beld de
— (/P2 —rA] —r)/(L+7) = (s/r)(r + pD ™ be)]c dd
ddd =sD~'d*(rd da —qcdb — pbdc) + [Al +s(L~r + (p/r)D 'bc)lddd.  (2.15)

These relations are new results. Note that when s 5% 0, they are no longer quadratic relations
(in contrast to the commutation relations between Maurer—Cartan forms and a, &, ¢, 4). For
the special solution s = 0, Al = r~! of (2.14) the above relations first appeared in [22]
according to our knowledge (see also [25]).
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Remark I. The commutation relations (2.1) can be expressed as

RTeT)=TeT)R (2.16)
(01‘ §12T1 Tz = Tl Tzft;]z) where
a b
Tz(c d) .17
and
g 0 0 0
s |0 g—p gp! O} _ (1 O 1 0 {01 0 0
R=1o 7 1 o o0)=%0 0/®lo 0)7? Lo 0)®\1 o
] 0 0 g

00 0 1 g—p~' 0 00
DB DT DR Y

For s = 0 the relations (2.15) simplify drastically. In particular, they become quadratic
relations. The corresponding two solutions of (2.14) are A} = r*! and (2.15) can be
expressed as

BT ®dT) = (¢/p)* T ®@ T)RT! (2.19)

(cf [13,14,20]). Application of the exterior derivative, assuming d*> = 0 and the graded
Leibniz rule, leads in both cases to

RW@T ®d7) = —(g/p)(dT @ dT)R™ (2.20)
which determines commutation relations between the differentials:

(da)® = (db)? = (dc)® = (dd)* = 0

dbda = —gdadb deda = —pdade

ddda = —dadd . dedb=—pg~'dbdc— (p — ¢ Hdadd

dd db = —pdb dd dddc = —gdcdd.

The last set of relations can also be found in [29]. For the s = 0, Ai = r calculus the
commutation relations and their formulation in terms of the R matrix appeared in [13]}

Is it possible to express the commntation refations (2.22) or (2.15) of the general
bicovariant differential calculus on GL; 4(2) (only) in terms of 7, the R-matrix and the
parameter s7 In [28] it was conjectured that the family of differential calculi on GL, ,(2)
given in theorem 2.1 can be described by

ATy T = RioT1 dToRiz + t(Ria + ¢ DT dT(Riz + 971 2.21)

with a parameter ¢, an expression which appeared in [14]. This is not trug, however, since
the latter are quadratic relations, whereas (2.15} involve guartic powers of algebra elements
when s # 0.

 § There is a misprint in the third equation of (22) in [13].
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Remark 2. In [23] (see also [22,24,14]) differential calculi on GL,,(2) have been
constructed from differential calculi on a quantum plane with generating ‘coordinates’ x°,
i=1,2. Ttis assumed that the mapping

Sx)=Te®x  8(dx) = dT®x + T dx

extends to a morphism of differential algebras. Starting with two specific differential
algebras on the quantom planej one recovers, in particular, the two bicovariant differential
calculi with s = 0. There are four additional differential calculi which—by comparison of
the corresponding relations in [23] with (2.15)—-are not bicovariant.

Bicovariant first-order differential calculi always admit an extension to higher orders
[1]. Differential forms of higher order are obtained by applying d to 1-forms (and then also
higher forms) using d? = 0 and the graded Leibniz rule. Bicovariance guarantees that there
are commutation relations between the 1-forms which are compatible with these structures.
In the following sections we will need some more results from [27].

Theorem 2.2, Let r # 0,—1,%i. With the exceptioni of the two solutions s =
1/ + r),A} = —1/(1 +r) and s = 1/[2(1 + r)],A} = r/[2(1 4+ )] of (2.14) the
commutation relations of the Maurer—Cartan forms for the bicovariant differential calculi in
theorem 2.1 are’ ' '
1—r(l+rN) 9203
r+r21+N)
(62)2 — (93)2 =0
42 r(l—r+A) 0203

14+r(1+N)

1
l+r(1+N)
+[1 = r ~rN(r — s(1+r?)16%*%)

@) =

@

629! = (=rl2+ N +r—s(1+r))0'6*

836 = -j} (24N +r—s(1+r)10'6* +Ir — 1+ rN(r —s(1 +r*))}0%%)
2-+(r+ DN
451 _ _glps ST LY 423
0% =—0'8" + ¢ = DI T Y
9392 = _9283
_
1+r(1+N)
+r — 1 — N(1 —s(1+r%))60'6%)

9%? = (—[24 N1 +7 —s(1 +r))e%e*

8'¢* = —,-;7 ([r —1—=NU =501 +r)10'0> +r[2+ N1 +r ~ S(1+ rNietet) (2.22)

t These are skew products (see [23]) of the two algebras generated, respectively, by x* with xle? = qxle and
dxf with (dxf)? = 0, dx! dx? = ~(1/p)dx? dx!.

1 The two exceptional solutions have to be discussed separately. The corresponding analysis is simple and will
not be presented in this wark.
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where
M=14r+Ni2+r+1—s@ +ri+r+ 1] (2.23)

_ 2 I oy
N= D [(r°+ 1}(A; —rs) —2r]. {(2.24)

Proof. See [27]. The formulae only make sense when M # Oand 1 +r(1 4+ N) # 0.
These conditions are only violated for the two solutions of (2.14) excluded in the theorem
orif r € {0, -1, i} : O

Theorem 2.3. Let r %= 0,X1. Then

df = %[1&, fl VieA (2.23)
for the bicovariant calculi on GLp 4(2). Here N is given by (2.24} and

% =6+ %94 (2.26)
is a bi-coinvariant 1-form.
Progf. See [27]. Using (2.14) one finds that N =2 0 iff r 2= £1. a

More generally, (2.25) holds with f replaced by any k-form if the commutator is
replaced by a graded commutator [1]. A formula of this kind plays a central role in [26]
where bicovariant differential calculi are defined on more general classes of algebras.

3. Consistency of the differential algebra

The relations {2.22) show that the ‘ordered’ monomials #X8% with K < L form a basis
of the space of 2-forms. What about the spaces of higher monomials? Here one meets
the problem that the relations (2.22) do not allow a ‘mechanical’ ordering of higher than
quadratic monomials if 5 % 0. For example, if we try to express the cubic monomial §2616°
as a linear combination of ordered monomials §¥8+8™ with K < L < M we run into an
ordering cycle:

6%9'9® — 0'9%9% + 6%6°0° — 9'9%¢% +-020%0* + 679'0% — ... (3.1)
" {where we have omitted the numerical factors). In [13] this has been put forward as an
argument to single out the two s-= 0 calculi (for which ordering cycles do not appear)t.
The appearance of ordering cycles does not mean that the ordering relations (2.22) are
inconsistent. But, in principle, such ordering cycles can give rise to additional constraints
or missing relations between higher monomials and thus change the apparent dimension of

the space of monomials. Taking care of the numerical factors in (3.1) we can solve the
resulting equation for the monomial 826'6%, The result is

0%9'9* = E71 (-M6'60%0° +[r — 1+ rNG —s(L+r)19%0%%) (3.2
which shows that we can express the monomial in terms of ordered monomials if
E:=2+4+N[l+r—-s(l+r%) 3.3

does not vanish. E = 0 means s = 1/(1+r), Al = —1/(1 4+r). But this is one of the
‘forbidden’ solutions of (2.14) which we encountered in section 2. In this way we arrive at
the following result.

T This argument would forbid the bicovariant differential calculus on SLg4(2) as considered, for example, in [19],
cf also section 4.
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Theorem 3.1. Letr # 0, —1, £i. With the exclusion of the solutions

(@) s=1/(1+7), Ay =-1/(1+7)

(b) s=1/[2(1 + 1)1, Al =r/2(1+1)]

© s =—r/(1+r%, Al = —r/[1+ (A —r +7¥)]

(d) s=r/i(L+r1+r+r3], Al =r(I+20)/I0L + (1 +r 472

of (2.14), the following holds for all the bicovariant differential calculi on GL, ,(2)
determined by theorem 2.1. Each cubic or quartic monomial in the 6% can be expressed
in a unique way as a linear combination of the ordered monomials. The latter are linearly
independent. All quintic and higher monomials vanish identically.

Proof. TFirst one has to consider all cubic monomials in the 8% which are not already in
the normal order. If an ordering cycle appears there will be a condition for the solvability of
the respective equation for the monomial which we started with. All conditions additional
to those already stated in theorem 2.2 are obtained from the relations considered in the

following.
An attempt to order the monomial 6266 using (2.22) leads tot

Fe%9'e: =0 ' 3.4
with
Fi=(1+rN2srl+r—-sQ+r)]+Nl+r—s(l=r?+2}. (3.5

If F = 0, the monomial #26'6% will be independent from the ordered monomialsy, We
have F = 0 if r = +i. For r # i we can convert the condition F = O into an equation
linear in Al using (2.14). Solving for Al and inserting the result into (2.14) leads to

4+ P2+ + sl r) — 1P =0 3.6)

For r # —1 there are thus two solutions, s = —r/(1 4+ r?).and s = 1/(1 4 r). Evaluation .
of Al then leads to

Al = —r/[A + 1A = r ++3)] and Al =<1/ +7)

respectively. The second solution was already excluded in theorem 2.2.
Treating the monomial °9'9% in the same way and using M = 0 (cf the proof of
theorem 2.2), we are led to consider the equation

A+ sQ+00+r+rH=rllsd +1 —1F =0 3.7
and thus to exclude the further solution |
s =r/[(0+ 1 +r+r) Al =r(14+20/[A+ 1 +r+rH]

of (2.14).
In order to guarantee that 946%9* vanishes, we have to forbid the solutions of

r(l+r2s(l+r =12s(1+r—1P=0. (3.8)

t Here we use 1+ r{l < &) 5 0, sce the proof of theorem 2.2,
T 'We may consistently set it to zero, however.
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But these are already excluded by the conditions of theorem 2.2.

There are no further conditions from the ordering of the remaining cubic and quartic
monomials (the latter are all proportional to 81626%¢*). All quintic monomials are easily
shown to vanish.

To normal order a monomial like 89°6% we may either start with %63 or with 6°42.
One has to check that different ways of ordering such a monomial (and, more generally,
a monomial in 8% and elements of .A) lead to the same result. A general argument [30]
says that it is sufficient to check this for the cubic monomials. This has been done and we
have not found any additional constraint for the general bicovariant differential algebrat. It
guarantees the unigqueness of the ordering proceduref. d

4. Bicovariant differential calculi on SL,(2)

When p = g the ‘quantum determinant’ D introduced in section 2 becomes central, i.e. it
commutes with all elements of the Hopf algebra .4. The restriction

D=ad —gbc=1 ‘ 4.1)

then defines the quantum subgroup SL,(2).

In the following two subsections we discuss two different ways to obtain bicovariant
differential calculi on SL,(2) from the general bicovariant calculus on GL,(2).

Wherever we refer in this section to equations of section 2 the restriction p = g (which
implies r = ¢2) is tacitly assumed.

4.1. D =1 as a constraint on the general bicovariant differential calculus on GL4(2)

Imposing the condition (4.1) on a differential algebra for GL,;(2) requires that all 1-forms
commute with 20, This means that

AD—-gBC=1 (4.2)
where 1 is the 4 x 4 unit matrix. For p = ¢ we have

AD—gBC=V1 4.3)
with

V= (gB)’ (44)
with § defined in (2.13). The constraint (4.1) becomes ¥V = 1. This is satisfied when

g € {*1,%i}. Otherwise (assuming ¢ # 0 and using (2.14)) the parameter s is restricted
to the values :

1

ol Fr - : (4.5)

S+

t Details of these calculations will be reported in the diploma thesis of C Reuten.
1 This has been questioned in [28] for the calculus with s £ 0.



Bicovariant differential calculi 2965

where g # ~(1 £ i+/3)/2 for 5. and g 3 (1 +i+/3)/2 for’s_. Then

g —g +q%+1

- for s
T+ 1 )
——— for s,
qg*tq+1)

For the general bicovariant calculus on GL,(2) we obtain

J

) 4.7
gt +1 “7

dD = —

where # is the bi-coinvariant 1-form defined in (2.26) and
Ji=@A+ @ +a* +2 + s —¢* - ¢* -1 - (4.8)

Differentiation of (4.1) then leads to the constraint d2 = 0 which is identically satisfied
when s = s, since then J = 0.

Hence, there are indeed two bicovariant differential calcul: on GL,{(2) which are
consistent with the constraint (4.1):

(a) For s = s_ the matrices A, B, C, D are given by

(_@-a+d+1 1
qlg*~q+1 - g*—q+1
Ao 0 -1 0 0
0 0 -1 0
_q3—q2+1 ' 0 l1—g
\ qgf-g+D @ —q+1
( 0 —(g+1) 0 0 \
01 0 .0 (10 )
g — g(l—q
= | = . 0 0 ———
5 g>—q+1 g —q+1
1 .
\ 0 —(1+—) 0 0 )
q 4.9
( 0. 0 —{g+1) 0 \
g-—1 0 0 q(l —q)
2 x
c=]|9"—g+! g-t—gq+1
0 0 0 1 0
0 0 —(1+-) .0
\ - )
99 -0 g —q+t
g*—g+1 g>—gq+1
D 0 -1 0 0
- 0 B - 0
g° gt +qt—q+1
\ 77 0 0
g*—q+1 glg*—¢+1D

(b) For s = s, the matrices A, B, C, D take the following form:
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(¢+@+a+1 1
glg>+g+1) g?+g+1
Ao 0 10 0
0 01 0
@+ 0 o —4*1
\ gl@*+q+1) g +g+1
( 0 g—1 0 0 \
q-(i)-l >0 q(qql-l)
B=\| gt o 0 g?+q+1
\ 0 140 0 )
q (4.10)
{ 0 0 g-1 0 \
g+1 0 0 g{g + 1)
c=|2*+a+1 g*+g+1
0 0 10 0
\ 0 0 . 1 o
(et . $£-g-]l
g>+g+1 @+g+1
D 0 10 0
02 01 . 20
q 0 o 2 +g°+qg+1
\PFq+1 g(@*+gq+1)

The classical limit of these calculi will be discussed in section 4.3.

Theorem 4.1. Let g £ 0,1, £i. The 5. calculi (with g =£ —(I & i+/3)/2, respectively
g 5 (1 £i+/3)/2) are the only bicovariant differential calculi on SL,(2)t .

Proof. The analysis in [27] which led to our theorem 2.1 can be. repeated for SL,(2)
(instead of GL, ,(2)). One obtains the same results as for GL,(2) and simply has to add
the constraint (4.1}, We have just shown that this singles out the s caiculi. O
Remark. Let us introduce a new basis of 1-formsi

of = g%, 6% 4.10)

with the matrix

2 3
4 0 o 4
e 0 o
Q:= 4 (4.12
s |
4 o o 2Utg-g7
g°—1 7> -1

T The sz calculi are also defined for g = %1, Le. » = 1. One has to check, however, whether there are additional
calculi in this case {(cf theorem 2.1).

} Cf equation (5.26) in [15].
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From the commutation relations of 6% with a, b, ¢, d one obtains the following commutation
relationst:

w'a = g 'aw’ w'b = gbe'
w’a = (1 — gbw' + ae? w*b = baw*
Wa=aw®  @b=(i— ¢Haw! +ba?

w*a = g71(g? - %aw' +¢71(1 — 9H)be’ + gaw* o' = g7'(1 — ¢Haw* + ¢ bas*.
{4.13)

The missing relations are obtained from those listed above by replacing @ and & by ¢ and d,
respectively. These commutation relations are (up to a slight change of notation) precisely
those listed in [19] (cf equations (5.19) and (5.20) therein). Let us sketch how they were
derived (cf also [16-18,5]). In terms of the matrices [15]

—Hp2 _ -1 H2
+_ (4 lg—g " )X4 -— q 0
L™= ( 0 g ) L™= (—(q ZgYX_ —gER (4.14)
the (Drinfeld-Jimbo) commutation relations
H_ -H S
1 -9 _ S @as)
q—4q :
of the quantum universal enveloping algebra s£,(2) (the quantum Lie algebra’ of SL,(2))
can be wiitten as

[H, X4] =42X. X4, X )=

RoLILY =LYLIRn  RuL;LT =L7L;Rn  RpLYLT =L{LIR, (416)

if g # 1. The matrix

q ¢ 0
_]o 1 0.0

R= 0 g—g7' 1 0 4.17)
0 0 0 g

is related to R by multiplication with the permutation matrix (acting on a two-fold tensor
product). The exterior derivative is now expressed as

_ 1 0 o' @\ 2
o=%(o 2)(e o) (G 3] .18

where the matrix y of operators xx is defined by
L*S(LT)=1-(g—q "x (4.19)

and S is the antipode of 5/,(2). The relations (4.13) and the commutation relations which the
I-forms ©¥ satisfy can now be derived from (2.1), the above equations, and the properties
of the exterior derivative (see [19] for details)}.

T 0 becomes singular in the cfassica.l limit ¢ — 1. Whereas the limit ¢ — 1 exists for the ¢¥, this is not so for
! and &,

 See also [2] for a construction of bicovariant d1fferent1a1 calculi on quanfum groups starting with the ‘quantum
Lie algebra’.
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4.2. A bicovariant differential algebra for SL,(2) as a subalgebra of a bicovariant
differential algebra for GL4{(2)

There is another simple way to obtain a differential calculus on SL,(2) from a calculus
on GL,(2) (cf [20] where the special differential calculus with s = O and A{ = g2
is considered). Let T denote the matrix with entries a, b, ¢, d satisfying the GL4(2)
commutation relations. Furthermore, let us assume that D~'/2 exists and commutes with
all elements of GL,(2) (note that D is central). Because of (4.3) it has to satisfy

gEp-12 — Ly-12p-1/2gK (4.20)

where V is defined in (4.4). For this to make sense we must have ¥V # ( which means
g # 0, =i and we have to exclude the solution s = 1/(1+g?), Al = —1/(1+¢?) of (2.14).
The entries of

A

e Ty=12 . a 1,{
T:=7 T—.(a d) (4.21)

satisfy the GL,(2) commutation relations and furthermore D= detq’f’ = 1. They generate
SL4(2) as a subalgebra of GL4(2) and the differential calculus can be restricted to it. We
can introduce cormresponding Maurer—Cartan 1-forms

1 g2 a
(2»3 34) = s(P)dT
= S(T)dT + %S(T)’Dm[ﬂ, YT

1
= +V128(TydT + F(:l:v-ll2 —1#1

p (8 82 1, B
=4V 1/2(93 34)+E(:1:V 1/2—1)(0 g) (4.22)

where N is defined in (2.24) and & in (2.26). To derive the last expression we made use
of {2.25) and (4.20). It allows us to calculate commutation relations between the 1-forms

6% and the entries of T from the corresponding commutation relations of a bicovariant
differential calculus on GL4(2Z). From (4.22} we obtain

§% = Ly-12pK, gL (4.23)

with the matrix

+AFVI/N 0 0 QF VIR

_ 0 10 0

P 0 - 0 (4.24)
AFV2YN 0 0 14 (1FVYD/(GEN)

If we write the commutation relations between the 1-forms 6% and elements of GL,(2) in
the form

G5 f = B(fHkat (4.25)
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then we obtain

B(f) = PO(HP. _ ' (4.26)
The homomorphism property of © thus goes over to 8, ie. |

O(fh) = 8(f)B(h) (4.27)
and this holds in particuiar if f and A are restricted to be elements of SL,(2). Since

(@ D= HE D)

(G E--(GHEE
the differential algebra on GL, {2} can be consistently restricted t6 the SL,(2) subalgebra.
In conclusion, each bicovariant differential calculus on GL,(2) induces a comresponding

bicovariant differential calculus on the subalgebra SL;(2). There is no restriction of the
parameter s except for the one mentioned after (4.20). A straightforward calculation now

leads to the following result,

Theorem 4.2. Let g 5 0, 21, £i. In terms of the (SL,(2) Maurer—Cartan) 1-forms (4.22)
and the algebra elements &. &, &, d, D2 alf bicovariant differential calculi on GL,(2) with
the exception of the one specified by 5 = 1/(1 +¢%), Al = —1/(1 +¢?) are determined by

G%e = @Af +dcfHg* 6%d = @BF
éKDI,/'Z = ivl}'Z‘Dl/Zé‘K'

For the plus sign in the last equation the matrices 4, B, C, D are given by (4, 10) and we
have to require g # —(1 £ iv/3) /2. In case of the minus sign they are given by (4.9) and
we have to assume g # (1= i+/3)/2.1 |

It is remarkable that the parameter s does not explicitly appear in the first four relations
of the theorem, but only in the last relationf. In this way accordance is achieved with

theorem 4.1.

Remark. As a consequence of theorem 4.2, when p = g the parameter s can be eliminated
from the commutation relations of the ‘vector fields’ Vg (generating the ‘quantized Lie
algebra’) given in [27]. They are defined by

df = (Vg )% VfeA (4.30)

1 Our assumptions ensure that V 5 0 and N 0 so that (4.22) is well defined. Furthermore, P! exists. q # =%l
is only assumed to ensure the ‘all’, cf theorem 2.1.

i Tt appears, however, implicitly throogh the relation between the GL, (2} and the SL,;(2) Maurer—Cartan forms.
Note that 65 = g% for g =5,
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Instead we may consider the vector fields Vg given by
df = (Vg F)o% YfeAd (4.31)

Their commutation relations are obtained from this equation by applying d, using (4.29)
and the commutation relations which the #¥ have to obey. Since the latter do not depend
(explicitly) on s, the same must hold for the ﬁx‘%z. relations. Also the coproduct of GK
(cf [277) only depends on g. Hence we are in accordance with a result of Drinfel’d [31]
(see also [32]) which says, roughly speaking, that simple Lie algebras have at most one
‘quantem deformation’ {as Hopf algebras), The results in [27] for p # ¢ show that such a
statement is not true for the non-simple Lie algebra g£(2)1. 4

4.3. The classical limit of the 54 calculus on SLy(2)

It seems that the two differential calculi with 5§ = sy do not vield the ordinary differential
calculus in the classical limit since sy does not vanish when ¢ — 1. In case of the s_
calculus we obtain in particular 8%a = —a8¥ for K = 2,3 when g = 1. This indeed rules
out an ordinary classical limit. Let us now consider the s calculus. For ¢ = ! we obtain

9! 8 + 59 0

62 2 2

o la=a| 5 sl (432)
6* g — 39 0

and

8! ol — Lo 0

62 62 0

g 2=t g5 |te 1 (4.33)
gt 8+ 3¢ 0

where now # = 8' + 9%, The Maurer-Cartan L-forms defined in terms of the ordinary
differential calculus on the classical Lie group SL(2, C) satisfy 8% == —@'. With this
additional constraint one finds that a, b, ¢, d commute with the 8%, In this way we recover
the classical case. It has to be stressed, however, that the g — 1 limit of the s calculus is
not the ordinary differential calculus.

Remark. Is there a consistent constraint on the 1-forms 8% for ¢ 5¢ 1 which reduces to
g* = —8' in the limit ¢ — 1?7 Writing 6* as a linear combination of 8!, 8% and 83,
consistency with the commutation relations (2.9) restricts it to

94 = -—q-lgI . (434)

Except for special values of g this is, however, not consistent with the bicovariant differential
algebra, For example, as a consequence of the last condition the expression

442 - —
6% ~ 720" = —g7(q ~ YHg* + ¢ + )66 (4.35)
would have to vanish,
T A counterexample also appeared in [33]. The authors constructed a special differential calculus (which is not
bicovariant) on GL; 4{2) and the corresponding Hopf algebra generated by the vector fields. In terms of suitable

functions of the vector fields, the commutation relations were shown to depend only on a single parameter, but
the coproduct formulae depend on two parameters (see also [27], section 5).
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In the following we will explore the s calculus on SL(2, C) (i.e. with g = 1) in more
detail. Let x! := a,x? := b,x® 1= ¢,x* := d. From the above commutation relations
hetween Maurer—Cartan forms and a, b, ¢, 4 one derives

[dx*, xV] = gz - (4.36)
where i

T =10 =7, dx¥ (zu) = %(x"‘, —x3, ,,,x2, xhH (4.37)
and

g =t +4 (555 — 55)) (4.38)

(indices in brackets are symmetrized). This matrix is degenerate, ie. det(g”’) = 0, and
satisfies g#"7, = 0. Using the relations of the s, calculus, one finds that v satisfies dv =0
-and 72 = 0. Furthermore, it commutes with x* and anticommutes with dx* (w =1,..., 4).
One of the ‘coordinates’ x# is redundant because of the constraint P = 1. Let us
consider the subalgebra generated by only three of them, say x’ where i = 1,2, 3. Then

[dx, /] = g¥x (4.39)
with

g =xix/ 4 asfs). ' ' (4.40)
Since det{g'/) = —4(x!)2 = —4a?, this is a non-degenerate symmetric matrix (a ‘metric’)

if a # 0. The latter is just the condition allowing us to solve the determinant constraint
ad — bc =1 for d = x*. In (4.39) the 1-form 7 is independent from the 1-forms dx’.
Indeed, an attempt to express 7 as a linear combination of the differentials dx’ using
x* = (14 x2x%)/x" fails. The resulting equation is identically satisfied and does not tell us
anything about T.

4.4. Bicovariant differential calculus on §L;(2, R)
The ‘reality conditions’
a*=a =8 c*=c d*=d (4.41)

where * is an antilinear involution on .A (which on complex aumbers acts as complex
conjugation denoted by a bar) is compatible with the GL, 4(2) commutation relations only
when |p| = |¢| = 1. These conditions define the quantum group GL, ,(2, R)}. The quantum
group 5L, (2, R) is then obtained from SL,(2) restricting g by [g| = 1, ie.

g=q"". (4.42)
Assuming that

(fadR)* =dr™)f* . VYfihe A . (4.43)
one finds that the 5. calculus on SL;(2) is compatible with the reality conditions. In order
to verify this it is helpful to first derive the relations

(81)* = _94 i (92)* = q92 (93)* — q--193. (444)
Then one has to apply * to the commutation relations between 8% and a, b, ¢, d, and use
(4.41) and (4.44) to show that the resulting equations are consequences of these commutation
relations.

Let us turn to the classical limit (g = 1) of the 54 calculus and use the notation of

section 4.3, We still have (4.39) with (4.40), but now the functions x* are real and g is a
real metric on SL{2, R).
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Theorem 4.3. g is the maximally symmetric Lorentzian metric on SL(2, R) with negative
constant curvature.

Proof. g' depends continously on x? and x*. det(g"/) = —4(x')? is non-vanishing where
x! 5 0 and independent of x? and x*. Hence, the signature of ¢” does not depend on x?
and x3. For x? = x® = 0 the eigenvalues of g”/ are —2, +2 and (x')2. This proves that g/
has Lorentzian signature (—, -, ). .

Calculating the curvature tensor of g we find

Rijke = —(gin&je — Gie&ix) (4.45)

which shows that we have a space of constant curvature. Now the statement of the theorem
foltows since the last equation uniquely determines a metric with given signature (see, for
example, {34], section 13.2). ] [}

Differential calculi of the form (4.39) on a commutative algebra of real functions (as in
the case under consideration where g = 1) were studied in {35].

5. Bicovariant differential calculi on SU;(2)
Analogues of unitary matrices are defined by
S(T) =Tt := (zz f;) 5.1)
where * is an involution of the algebra GL; 4(2). This means that we have to identify
b=—gDc* d = Da", (5.2)
Consistency with the commutation relations of GLjp 4(2) enforces

p=3q ' (5.3)

(where the bar denotes complex conjugation} and

ac = gca ac* =gc*a cc* =c*c ata=1-c* ad® =1—ggc"c

DD =1 aD =Dg a*D = Da* ¢D = (§/4)Dec *D = (g/3)Dc*.
(5.4)

These relations define the quantum group Uz ;(2} as a quantum subgroup of GL, ,(2). The
quantum subgroup SU, (2) [36] is then obtained by imposing the further constraint D = 1
which requires § = g, i.e. g has to be real. Two bicovariant differential calculi on SU,(2)
were found by Woronowicz who denoted them as the 4Dy caleuli [1]. It was recently
demonstrated that these are the only bicovariant differential caleuli on SU,(2) [10]. We
have shown (using different techniques) that also on SL;(2) there are only two bicovariant
differential calculi. The 4D, calculi on SU,(2) are obtained from our 5+ calculi by imposing
the condition (5.1)7.

t I [10] the commutation relations between 1-forms and algebra elements are expressed in terms of a set of 1-forms
Qy which are related to our 5. Maurer-Cartan forms 8% by ) = 6%, 2 = —962, @3 = —(g/y/1+ gH) (8! —8%)
and 4 = F¢%/(1+ g9
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6. Conchusions

The main result of section 2 are the commutation relations (2.15) between the generators
a,b,c,d and their differentials for the most general bicovariant differential calculus on
GLp4(2). In terms of the Maurer—Cartan forms, the corresponding relations are much
simpler and were derived in [27]. The derivation of (2.15) became necessary for comparison
with the results of Manin and in order to settle a question raised in [28] concerning an R-
matrix formulation for the bicovariant calculi found in [27] (see the remarks in section 2).
We have checked these relations carefully using the computer algebra software REDUCE
[37].

An apparent consistency problem for the calculi with s # 0 mentioned in E13] is resolved
in section 3. An attempt was made in [13] to single out the two s = 0 calculi which admit
a simple R-matrix formelation. This would mle out the 4D, caleuli on SU,(2) since we
have shown that they correspond to the s: caleuli on GL,(2) (see section 5) and this is
precisely the calculus considered in [19].

The authors of [20] mentioned that the seemingly obvious way to carry differential
caleulus from GL,(2) over to SL,(2) by imposing the determinant constraint D = 1 does
not work. We have shown, however, that it does work if the right choice of bicovariant
differential calculus on GL,(2) is made. It works for our 53 calculi. An alternative, but
less direct way towards differential calculus on SL,(2) starting with the s = 0, A} = ¢72
caleulus on GL,(2) was followed in [20]. We have exploited this procedure in section 4.2
for the most general bicovariant differential caleulus on GL,(2). This led to our theorem
4.2 which shows that the complicated structure of dlfferentlal calculi on GLP 4(2) greatly
simplifies when p = g.

In conclusion, there are two different ways to obtain bicovariant differential calculi on
SL,(2) from those on GL4(2):

{a) We can start from the GL,(2) differential calculi with s = 53 and meose the
determinant constraint on the dlfferentlal algebra (see section 4.1).

(b) We can start from any of the GL,(2) differential calculi and restrict it to the SL,(2)
subalgebra (as discussed in section 4.2).

Both procedures lead to the same result in accordance with our uniqueness theorem 4.1.

Among the two bicovariant differential calculi on SL,(2) only the s, calculus has
a reasonable classical limit, although even in this case we do not obtain the ordinary
differential calculus as ¢ — 1. We have shown in sections 4.3 and 4.4 that the resulting
differential calculus for g = 1 is of the form of the deformed differential calculus (on
a commutative function algebra) discussed in {35]. It remains to be seen to what extent
the physical ideas in [35] apply to the classical limit of bicovariant differential calculi on
quantum groups and beyond.

The fact that the space of 1-forms is four-dimensional for the quantum groups SL 2)
and SU,(2) whereas it is three-dimensional for the ordinary differential calculus on SL(Z)
and SU(Z) is usually regarded as an unpleasant feature of bicovariant differential calculust.
The above-mentioned relation with the work in {35] may turn this apparently negative aspect
into a positive one, however.

1 A differential calcelus with a three-dimensional space of 1-forms on SU,(2) has been considered in [36]. Tt is
not known whether this calculus can be characterized in a natoral way in order to distingnish it from the many
other consistent (and not necessarity bicovariant) calculi.
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