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Bicovariant differential calculi on GLp,q(2) and quantum 
subgroups 

F Muller-Haissen and C Reuten 
Institut fiir Thearetische Physik, D-37073 Gdningen, Federal Republic of Germany 

Received 6 January 1993 

Abstract. In a recent paper all bicovariant differential calculi on the two-parameter quantum 
group GL,& were determined. In this work we elaborate some of theit pm@es and discuss 
relations with work by other authors. Furthermore, we show that there are two different ways in 
which bicovariant differential calculi on GLq(2) (where p = q )  induce corresponding calculi on 
the quantum subgroup S& (2). It is shown that on SLq(2) there are only two different bicovariant 
differential calculi,’ From these one obtains the 4 0 1  calculi on SU,(Z). The classical limit of 
the two differential calculi on SLq(2) is investigated revealing a relation with recent work on 
deformed differential calculi on commutative (fundion) algebras. 

1. Introduction 

Groups play an important role in the formulation of physical theories and in solving 
mathematical problems arising in physics. Quantum groups can be viewed as generalizations 
of ordinary groups (in the sense of Hopf algebras) i d  it is of interest to explore their possible 
relevance in physical contexts. 

Differential geomehy on Lie groups enters physical theories in various forms. The Lie 
algebra is represented as the algebra of left- (or right-) invariant vector fields on the group. 
In field theories with an action invariant under a Lie group these vector fields (‘currents’) 
are related to conserved charges via Noether’s theorem. In many physical models the (left- 
or right-invariant) Maurer-Cartan 1-forms on a Lie group play a central role. These notions 
can be carried over to quantum groups [l]. The quantum analogues of left-invariant vector 
fields are related to non-local currents and conserved charges in two-dimensional quantum 
field theories. 

Differential calculus on quantum groups enters the formulation of gauge theory with 
quantum groups [2,3]. It is central in the approach [4,5] towards ‘q-gauge theory’ and 
‘q-gravity’ by ‘softening’ a quantum group (analogous to the corresponding procedure in 
the case of group manifolds [6]). Examples of ‘quantum spaces’ on which quantum groups 
act are obtained as ‘quantum coset spaces’ and inherit~a differential calculus from that on the 
corresponding quantum group [7]. Differential calculus is the very basic structure needed 
to formulate dynamics on ‘quantum spaces’. 

A general theory of (bicovariant) differential calcuIus on quantum groups has been 
developed by Woronowicz [l]. He gave two examples of bicovariant differential calculi 
on SUq(2) which were called the 4& calculi [l] (see also [ W O ] ) .  ~ Since then a large 
number of papers has appeared dealing with examples of bicovariant differential calculi 
on special quantum groups or with approaches to define ‘preferred‘ bicovariant calculi on 
certain classes of quantum groups. Formulations of bicovariant calculi on quantum groups 
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with an R-matrix were given in [2,9,11-141. A formalism described in [l5] was used in 
[16, 171 to define bicovariant differential calculi on quantized simple Lie groups (see also 
[5,18-21]). In [22,23] special differential calculi on the quantum group GL,,,(2) were 
constructed from special differential calculi on a 'quantum plane' on which the quantum 
group acts (see also [14,24,25]). Some of them turned out to be bicovariant. A recipe for 
the definition of bicovariant differential calculi on more general algebras has been given in 
Wl. 

In [U] all bicovariant differential calculi on the two-parameter quantum group GL,,&) 
were found. They form a family which depends on an additional parameter st. For s = 0 
one recovers two differential calculi which have already been found [22] and which can be 
expressed in terms of the R-matrix of the quantum group [13,14]. The knowledge of all 
bicovariant differential calculi in the example of the quantum group GLp,,(2) allows us to 
relate various approaches and to clarify how and to what extent they work. In particular, 
we obtain some results concerning the relation between bicovariant differential calculi on 
GLp,4(2) and calculi on quantum subgroups. 

A summary of those results  om [27] needed for our discussion is given in section 2 
with some improvements and additional material. In [13,28] questions have been raised 
concerning the consistency of the differential algebra for s # 0. This will be addressed in 
section 3. 

In section 4 we discuss how to obtain a differential calculus on the quantum subgroup 
SLq(2) from a differential calculus on GLq(2) (where p = q )  (see also [19,20]). 

Section 5 briefly discusses the quantum subgroups Ut,q(2) and SUq(2) and how the4D* 
calculi on SU, (2) [ 11 are recovered from our results. Section 6 contains some conclusions. 

F Muller-Hoissen and C Reuten 

2. Bicovariant differential calculi on GLP.J2) 

The quantum group GLp,q(2) is the Hopf algebra A generated by a, b, c, d satisfying the 
commutation relations 

ac = qca 

bc = (q/p)cb a b  = pba cd = pdc. 

bd = qdb .ad = da + (p - l/q)bc 
(2.1) 

and the unit 1. Coproduct and counif are given by$ 

a @ a + b @ c  a @ b + b @ d  
A ( a  c d  ' ) = (  c @ a + d @ c  c @ b + d @ d  

 and^ the antipode is determined by 

where 2, = ad - pbc = da - q-lbc. In addition, A(11) = 11 @ 11, €(a) = 1 and S(11) = 11. 
The ceneal object of (first-order) differential calculus is the exterior derivufive 

d : A -+ h'(A)  space of 1-forms (2.4) 

t p, q and s are complex numbers. 
I: We use a compact notation for A(a) = a  @ a  + b @ c etc. 
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satisfying the Leibniz rule 

d ( fh )=(d f )h+  f d h  Vf ,hEA.  (2.5) 

The space of I-forms A'(A) is generated as an A-bimodule by the differentials of a ,  b, c, d. 
To specify a (first-order) differential calculus one has to prescribe (consistent) commutation 
relations between a ,  b, c, d and their differentials. 

A left-coaction A, : A'(A) + A @ A'(& extends A as a bimodule homomorphism 
to I-forms such that 

c @ d a + d @ d c  c @ d b + d @ d d  ' "(dc d d ) = ( c  d)'(dc d d ) : = (  
(2.6) 

1 da db a b  da db a @da + b @dc a @ db + b Bdd 

In the same way a right-coaction AR : A'(d)  + A'(A) @ X  is a bimodule homomorphism 
with 

da db da db 
AR(dc  d d ) = ( d c  dd)'(: :) 

The existence of A, and An depends on the commutation relations between a ,  b. c, d and 
their differentialst. If both exist. the (first-order) differential calculus is called bicovariant 
r.7 

111. 

I-forms ex in A'(d) given by 
Assuming the existence of A,, there is a basis of (left-coinvariant) Maurer-Cartan 

Commutation relations between the generators of A and their differentials can be expressed 
in terms of the Maurer-Cartan I-forms: 

9Kf =O(f)feL Vf EA. (2.9) 

Compatibility with A, leads to [l, 271 

(2.10) 

where A, E, C, D are 4 x 4 matrices (with complex entries). Consistency of (2.9) requires 
O(fh) = O(f)O(h) which means that A, B, C, D have, to form a representation of 
a ,  b, c ,  d. (2.9) and (2.10) imply 

(2.11) BKa = (aAf + bCf)9' 9Kb = (aBf + bD,)9 K L  

and the corresponding relations with a replaced by c and b replaced by d. 
Let us recall the following result from 1271. 

t In the case of a Lie group left and right coaction reformulate the left and right multiplication on the group. This 
is explained in detail in [SI. 
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Theorem 2.1. Let r := pq # 0, -It. Bicovariant (first-order) differential calculi on 
GL&) ace given by$ 

F Muller-Hoissen and C Reuten 

/ A !  0 0 s \ 0 B i O O  '=(:; 0 0 0  0 0 B:) 

0 B ; O O  
1 - s  0 0 D; 

48 0 

Bi = - ( 1 - r A i + r 2 s ) / ( l + r )  

B: = p [ ( l +  A: + r 2 s ) / ( l  + r )  - 1 +SI 
B ~ = - [ r ( l + A l + s ) / ( l + r ) - l + ~ ]  

B; = -(r - Ai + r s ) / ( l  + r )  

0: = -(1 - s) - [2+ ( 1  - r)A: + r ( r  - 1 ) :  

1 

4 

1 
r 

D: = A! + (1 - r)s 

and 

(2.12) 

'(1 + r )  

(2.13) 

(Ai ) ' -  ; [ l + r Z - ( 1 + r - r 2 + r 3 ) ~ ] A ~ + l - ( l + 2 r - r z ) s - ( 1 + r + r 3 ) ~ z = 0 .  1 

(2.14) 

For r # 1 these formulae determine all bicovariant differential calculi on GLp,q(2)§. 

Any set of functions and s ( r )  which solves (2.14) determines a bicovariant 
differential calculus on the quantum group GLp,,(2). In terms of the differentials, the 
commutation relations (2.9) for the bicovariant differential calculi in theorem 2.1 read 

d a a  = (A: +sprzV- 'bc)ada-sV- 'nz(qcdb+pbdc-add)  

dab  = p[(r2s+A~+1)/(1+r)+sprV~'bclbda-[(r2s-rA~+1)/(1+r)+sprV-'bc]a db 

- s(p/q)V-'ab(pbdc - add)  

t The equations (2.13) only make sense when r # 0,  -1. For some differential calculi the limit towards these 
values of r may eltist, however. 
t A closer inspection of the exceptional case where A: t A: - (1 + r)B # 0 which appeared in the analysis in 
[27, p 17211, shows that lhe additional assumption of a classical limit made there is unnecessary. 
5 For I = 1 there are additional calculi 1271. 



Bicovarianr differential calculi 2959 

dn c = q[(r2s+Ai + 1 ) / ( 1  +r) +sprD-'bc]cda -[(r2s-rAi + 1) / (1  +r)+sprD-'bcla dc 

- s(q/p)V-'ac(qcdb - a d d )  

d a d = [ l - s ( l  -prD-'bc)]dda 

- ( l /r)[(r 's  - ' A ]  + 1 ) / ( 1 +  r )  - s(1 - prD-'bc)](qcdb + pbdc) 

+( l / r ) [ (r ' s - rA:  + l ) ( l - r ) / ( l + r ) - s ( l - p r D - ' b c ) ] a d d  

dba = [(r's+Ai -r) / ( l+r)+sprD-'bc]bda 
- ( l /p )[ (r2s  - rA:  - r ) / ( l  + r )  +sprD-'bc]adb 

- (s/q)D-'ab(pbdc - U dd) 

db b = s(p/q)'D-'b2(rdda - pb dc +add)  + [A: - s(r + pD-'bc)]bdb 

db c = q[(r's + Ai - r ) / (  1 +r)  +s( l  +pD-'bc)]d da  + (q /p ) [ l  -s( 1 +r +pD-'bc)]c db 

-s( 1 +r +pD-' bc)b dc+ ( l /p ) [ ( r s  +r A ]  - 1) / (  1 +r) +s( 1 +pD-'bc)]a dd 

dbd = sp'D-'db(qdda - bdc) - q[(rs - A i  - 1 ) / ( 1 +  r )  + (s/q)D-'bc]ddb 

- [ ( r 2 s - r A ~ + l ) / ( l + r )  -(s/r)(r+pD-'bc)]bdd 

dca = -(s/p)D-'ac(qcdb-add) +[(r2s+Af - r ) / ( l + r )  fsrpD-'bc]cda 

- (l/q)[(r's - rA i  - r ) / ( l  +r)+srpD-'bc]adc 

dcb=p[(r ' s+A;  - r ) / ( l+r )+s ( l+pD- 'bc ) ldda  

- s(r + 1 + pD-'bc)cdb + (p /q ) [ l  - s(r + 1 + pD-'bc)]bdc 

+ ( l / q ) [ ( r s + r A :  - l ) / ( l + r ) + ~ ( l + p D - ~ b c ) l a d d  

dcc = s(q/p)2DD-'c2(rdda - qcdb + add)  +[Ai  - s(r + pD-'bc)]cdc 

dcd = s(q ' /p)D- 'cd( jdda - cdb) - p[(rs  - Ai - 1)/(1+ r )  + (s/q)D-'bclddc 

- [(r's - rAi + 1 ) / ( 1  + r )  - (s /r)(r  + pD-'bc)]cdd 

dda = -[(r(r's + Ai - r )  + (rs  - A: + r ) ) / ( r  + 1 )  - spD-'bc]dda 

+ [(r's + Af - r ) / ( l  + r )  - (s/q)D-'bc](qcdb + pbdc) 

+ [ 1  - s ( r -  (l/q)D-'bc)]add 

ddb =~s(p/q)'D-'bd(qdda - bdc) - [(rs - A: +r) / ( l+  r )  + (s/q)D-'bc]ddb 

- (l/q)[(r's -'A: - r ) / ( l  + r )  - ( s / r ) ( r  + pD-'bc)]bdd 

ddc = s(q/p)'b-'cd(pdda - cdb) - [(rs - A: + r ) / ( l  + r )  + (s/q)D-lbc]ddc 

- ( l /p)[(r 's  -'Ai - r ) / ( l  + r )  - ( s / r ) ( r  + pD-'bc)]cdd 

ddd =sD-'d'(rdda -qcdb - pbdc) + [Ai + s ( l -  r +  (p / r ' )T 'bc ) ]ddd .  (2.15) 

These relations are new results. Note that when: # 0, they are no longer quadratic relations 
(in contrast to the commutation relations between Maurer-Cartan forms and a ,  6 ,  c ,  d). For 
the special solution s = 0, A ]  = r-' of (2.14) the above relations first appeared in [22] 
according to our knowledge (see also [25]). 



2960 

Remark 1. The commutation relations (2.1) can be expressed as 

F Muller-Hoissen and C Reuten 

i?(T @ T) = (T @ T ) R  (2.16) 

(or i?1~TlT~ = TIT&) where 

(2.17) 

and 

0 0 

0 1 0 0  
0 0  o q  

1 (; q-p-1 qp-' "i = q ( ;  :)@(A : )+qp-fo  0 1  0 ) @ ( 1  0 0  0) R =  

(2.18) 

For s = 0 the relations (2.15) simplify drastically. In particular, they become quadratic 
relations. The corresponding two solutions of (2.14) are Ai = r*' and (2.15) can be 
expressed as 

k*'(T @dT) = (q/p)*'(dT @ T)kT' (2.19) 

(cf [13,14,20]). Application of the exterior derivative, assuming dZ = 0 and the graded 
Leibniz rule, leads in both cases to 

k(dT @ dT) = -(q/p)(dT @ dT)i?-' (2.20) 

which determines commutation relations between the differentials: 

(da)' = (ab)' = (dc)' = (dd)' = 0 

db da = -qda db dcda = -pda dc 

dd da = -da dd 

dd db = -pdb dd 

dcdb = -pq-'dbdc - (p - q-')dadd 

dd dc = -qdc dd. 

Th last set of relations can also be found in 1291. For the s = 0, A:  = r calculus tk 
commutation relations and their formulation in terms of the i? matrix appeared in [13]i 

Is it possible to express the commutation relations (2.22) or (2.15) of the general 
bicovariant differential calculus on GL,,,(2) (only) in terms of T, the R-matriu and the 
parameter s? In 1281 it was conjectured that the family of differential calculi on GLp,q(2) 
given in theorem 2.1 can be described by 

(2.21) 

with a parameter t ,  an expression which appeared in [14]. This is not true, however, since 
the latter are quadratic relations, whereas (2.15) involve quartic powers of algebra elements 
when s # 0. 

t There is a misprint in the third equation of (22) in [I31 

dTi Tz = i?izZi dTzi?iz + t(i?iz + q-')Ti dTz(i?iz + q-') 
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Remark 2. In [23] (see also [22,24, 141) differential calculi on GLp,4(2) have been 
constructed from differential calculi on a quantum plane with generating 'coordinates' x i ,  
i = I, 2. It is assumed that the mapping 

S(x)  = T 6 x  6(dx) = dT6x + T 6 d r  

extends to a morphism of differential algebras. Starting with two specific differential 
algebras on the quantum planet one recovers, in particular, the two bicovariant differential 
calculi with s = 0. There are four additional differential calculi which-by comparison of 
the corresponding relations in [23] with (Z.lS)-are not bicovariant. 

Bicovariant first-order differential calculi always admit an extension to higher orders 
[l]. Differential forms of higher order are obtained by applying d to 1-forms (and then also 
higher forms) using dZ = 0 and the graded Leibniz rule. Bicovariance guarantees that there 
are commutation relations between the 1-forms which are compatible with these structures. 
In the following sections we will need some more results from [27]. 

Theorem 2.2. Let r # O , - l , k i .  With the exception$' of the two solutions s = 
1 / ( 1  + r ) ,  A: = - l / ( l  + r )  and s = 1/[2(1 + r ) ] , A i  = r/ [Z(l  + r ) ]  of (2.14) the 
commutation relations of the MaurerTartan forms for the bicovariant differential calculi in 
theorem 2.1 are 

e2e3 1 2 -  1 - r ( l + r N )  
N )  

(e ) - r + 

o2e3 r ( l - . r + N )  
1 +r( l  + N )  

(e4S = 

e302 = -e203 

,4482 ( - [ Z  + N ( I +  r - $ ( I +  r 2 ) ) ] ~ 2 8 4  
1 

1 + r ( l +  Nj 
+[r  - I - N(I -$(I + r2))]e'62)  

1 
'M e4e3 = -- ( [ r  - 1 - N(I - $ ( I +  r 2 ) ) 1 @ ~ 3  +r[2 + N ( I +  r - s(1 + r2))1e3e4) (2.22) 

t These are skew products (see [Z]) of the two algebras generated, respectively. by x' with x ' x 2  = qx2x' and 
dr' with (dx')2 = 0, dxf d.z2 = -(l/p)dr2 dr'. 
$ The two excepfional solutions have to be discussed separately. The corresponding analysis is simple and will 
not be presented in this work. 
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where 

F Muller-Hoissen and C Reuten 

M = I + r  + N [ r 2 + r  + I - s ( r 3  +r2  + r  + I)] (2.23) 

(2.24) r ( r  + 1) 
Proof. See [27]. The formulae~only make sense when M # 0 and 1 + r(1 + N )  # 0. 
These conditions are only violated for the two solutions of (2.14) excluded in the theorem 
orifrc[O,-l ,&i].  0 

1 
N E -  [ ( r Z +  I)(A; - r s )  - 2 r l .  

Theorem 2.3. Let r # 0, Al .  Then 

df = y[fil f l  Vf E A (2.25) 

l9 := 0' + -0 1 4  

1 

for the bicovariant calculi on GLP,&). Here N is given by (2.24) and 

(2.26) 
r 

is a bi-coinvariant I-form. 

Proof. See [27]. Using (2.14) one finds that N # 0 iff r # k l .  

More generally, (2.25) holds with f replaced by any k-form if the commutator is 
replaced by a graded commutator [l]. A formula of this kind plays a central role in [26] 
where bicovariant differential calculi are defined on more general classes of algebras. 

3. Consistency of the differential algebra 

The relations (2.22) show that the 'ordered' monomials e K B L  with K c L form a basis 
of the space of 2-forms. What about the spaces of higher monomials? Here one meets 
the problem that the relations (2.22) do not allow a 'mechanical' ordering of higher than 
quadratic monomials i f s  # 0. For example, if we try to express the cubic monomial 6%"03 
as a h e a r  combination of ordered monomials B K B L B M  with K < L < M we run into an 
ordering cycle: 

(where we have omitted the numerical factors). In 1131 this has been put forward as an 
argument to single out the two s ~= 0 calculi (for which ordering cycles do not appear)?. 
The appearance of ordering cycles does not mean that the ordering relations (2.22) are 
inconsistent. But, in principle, such ordering cycles can give rise to additional constraints 
or missing relations between higher monomials and thus change the apparent dimension of 
the space of monomials. Taking care of the numerical factors in (3.1) we can solve the 
resulting equation for the monomial 828'83. The result is 

(3.2) 

0 2 e 9 3  -, 0'0203 + 020483 -, 0 ~ 0 3  + e20304 + 020'03 -, . . . (3.1) 

82t?183 = E-' (-M0'0203 + [ r  - 1 + r N ( r  - s(1 + r2))]6%384) 
which shows that we can express the monomial in terms of ordered monomials if 

(3.3) 
does not vanish. E = 0 means s = 1/(1 + r ) ,  A! = -l/(l + r ) .  But this is one of the 
'forbidden' solutions of (2.14) which we encountered in section 2. In this way we arrive at 
the following result. 

t This argument would forbid the bicovariant differential calculus on SLq(Z) as considered, for example, in [19], 
cf also section 4. 

E := 2 +  N [ 1  + r -s(l+ r 2 ) ]  
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Let r # 0, -1, fi. With the exclusion~of the solutions Theorem 3.1. 
(a) s = 1/(1 + r ) ,  A:  = - l / ( l  + r )  
(b) s = 1/[2(1 + r ) l ,  4; = r / [ z ( l  +r ) l  
(C) s =.-r / ( l  + r3 ) ,  A ;  = - r / [ ( l  + r ) ( l  - r + r * ) ]  
( 4  s = r / t ( l + r ) ( l + r + r * ) ] ,  A:  = r(1 + 2 r ) / [ ( l +  r ) ( l +  r + r2)1 

of (2.14),~ the following holds for all the bicovariant differential calculi on GLP,J2) 
determined by theorem 2 . 1 . ~  Each cubic or quartic monomial in the B K  can be expressed 
in a unique way as a linear combination of the ordered monomials. The latter are linearly 
independent. All quintic and higher monomials vanish identically. 

Proof. First one has to consider all cubic monomials in the O K  which are not already in 
the normal order. If an ordering cycle appears there will be a condition for the solvability of 
the respective equation for the~monomial which we started with. All conditions additional 
to those already stated in theorem 2.2 are obtained from the relations considered in the 
following. 

An attempt to order the monomial 6%’%’* using (2.22) leads tot 

F6*6’B2 = 0 (3.4) 

with 

F : =  ( ~ + r ~ ) { ~ ~ s r [ l + r  - s ( l + r 2 ) 1 + ~ [ 1 , + r - s ( ~  - r ) * ] + ~ ) .  (3.5) 

If F = 0, the monomial 026’6* will be independent from the ordered monomials$. We 
have F = 0 if r = f i .  For r # i i  we can convert the condition F = 0 into an equation 
linear in Ai using (2.14). Solving for Ai and inserting the result into (2.14) leads to 

( 1  + r ) ’ [ s ( l+  r3)  + r ] [ s ( ~  + r )  - 1 i 3  = 0. (3.6) 

For r # - 1  there are thus two solutions, s = - r / ( l  +r3).and s = 1/(1 + r ) .  Evaluation 
of A: then leads to 

A ;  = -r/[(l + r ) ( l  - r + rZ)l and A ;  = - l / ( l +  r )  

respectively. The second solution was already excluded in theorem 2.2. 

theorem 2.2), we are led to consider the equation 
Treating the monomial 636’03 in the same way and using M # 0 (cf the proof of 

( 1 + r ) * [ s ( l + r ) ( l + r + r z ) - r ] [ s ( 1 + r )  -12 = O  (3.7) 

and thus to exclude the further solution 

s = r / [ ( l +  r ) ( l  + r + r2)1 Ai = r ( l  +Zr ) / [ ( l  + r ) ( l +  r + r‘)] 

of (2.14). 
In order to guarantee that e4e304 vanishes, we have to forbid the solutions of 

t Here we use 1 + r(l  i- N) # 0, see the proof of theorem 2.2. 
$ We may consistently set it to zero, however. 
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But these are already excluded by the conditions of theorem 2.2. 
There are no further conditions from the ordering of the remaining cubic and quartic 

monomials (the latter are all proportional to 8182b%4). All quintic monomials are easily 
shown to vanish. 

To normal order a monomial like 848382 we may either start with 04e3 or with 8382. 
One has to check that different ways of ordering such a monomial (and, more generally, 
a monomial in O K  and elements of A) lead to the same result. A general argument 1301 
says that it is sufficient to check this for the cubic monomials. This has been done and we 
have not found any additional constraint for the general bicovariant differential algebrat. It 

0 

F Muller-Hoissen and C Reuten 

guarantees the uniqueness of the ordering proceduret. 

4. Bicovariant dflerential calculi on SLq(2) 

When p = q the 'quantum determinant' 'D introduced in section 2 becomes central, i.e. it 
commutes with all elements of the Hopf algebra A. The restriction 

'D = ad -qbc = II (4.1) 

then defines the quantum subgroup SLq(2). 

differential calculi on SLq(2) from the general bicovariant calculus on GL,(2). 

implies r = q z )  is tacitly assumed. 

4.1. 'D = II as a constraint on the general bicovariant differential calculus on GLq(2) 

Imposing the condition (4.1) on a differential algebra for GLq(2) requires that all 1-forms 
commute with 'D. This means that 

In the following two subsections we discuss two different ways to obtain bicovariant 

Wherever we refer in this section to equations of section 2 the restriction p = q (which 

A D - q B C =  1 (4.2) 

where 1 is the 4 x 4 unit matrix. For p = q we have 

A D - q B C = V l  (4.3) 

with 

v := (qfi)? (4.4) 

with ,8 defined in (2.13). The constraint (4.1) becomes V = 1. This is satisfied when 
q E [&I, i i ) .  Otherwise (assuming q # 0 and using (2.14)) the parameter s is restricted 
to the values 

1 
s* = 

l f q + q Z  (4.5) 

t Details of these wlculations will be reported in the diploma thesis of C Reuten 
$ This has been questioned in 1281 for the calculus with s # 0. 
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where q # -(I f i , 6 ) / 2  fors+ &d q # (1 zk i f i ) / 2  forb-. Then 

For the general bicovariant calculus on G h ( 2 )  we obtain 

d D  = -- J 6  
q 2 +  1 

where 6 is the bi-coinvariant 1-form defined in (2.26) and 

(4.7) 

J := q2Ai + (q6 +q4 + 24’ + 1)s - q4 - 4’ - 1. ~ (4.8) 

Differentiation of (4.1) then leads to the constraint dD = 0 which is identically satisfied 
when s = SI since then J = 0. 

Hence, there are indeed two bicovariant differential calculi on GL,(2) which are 
. 

consistent with the constraint (4.1): 
(a) Fors = s- the matrices A ,  B ,  C, D are given by 

q4-q3+qZ+l  1 - 
4(q2 - 4 + 1) 42 - ~ q  + 1 

-1 0 0 
A = [  43 - 0 42+ 1 0 -1 1 - 4  0 

. - 0  0 - 
4(q2 - 4 + 1) 4 2 - q + 1  

(4.9) 

(b) Fors = s+ the matrices A, B, C, D take the following form: 
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D =  

44 + 43 + 42 + 1 ( 4(42+{+1) 
A =  

0 0  
1 0  
0 1  
0 0  

1 

0 
4 2 + 4 + l  

4(4 + 1) 
q2+q + 1 

0 

0 4 - 1  0 
0 0 0  

B =  [ q + l  0 0  
q 2 + q + 1  

1 
0 - - 1  0 

4 

4(4 + 1) 
q * + q + 1  

0 i q f l  0 0 - -1  4 0 O I  

0 4 - 1  

0 0  

0 0  
c =  4 2 + 4 + 1  

1 

(4.10) 

' 4(4+1) 4 3 - 4 - 1  
q 2 + q + 1  4 2 + 4 + 1  

0 1 0  0 
0 0 1  

0 0 '  4 4 + q 2 + q +  1 
\ q 2 + q + l  4(q2+4 + 1) 

O2 4 

The classical limit of these calculi will be discussed in section 4.3. 

Theorem 4.1. Let q # 0, f l ,  f i .  The si calculi (with q # -(I i i A ) / 2 ,  respectively 
q # (1 * i&)/2) are the only bicovariant differential calculi on SL9(2)t . 

Proof. The analysis in [27] which led to our theorem 2.1 can be, repeated for SL&) 
(instead of GLp,9(2)). One obtains the same results as for GLq(2) and simply has to add 

0 the conseaint (4.1). We have just shown that this singles out the si calculi. 

Remark. Let us introduce a new basis of 1-formsf 

mK = Q K ~ B L  (4.1 1) 

with the matrix 

0 
0 

42(1+ 4 - 43) 
43 - 1 

0 0  

0 -42 0 
0 -42 

0 0  

Q := 

43 - 1 

(4.12) 

t The s* d c u l i  are also defined for q = i l .  i.e. r = 1. One has to c h d ,  however, whether there are additional 
calculi in this m e  (cftheorem 2.1). 
$ Cf equation (5.26) in [19]. 
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From the commutation relations of O K  with a ,  6, c, d one obtains the following commutation 
relationst: 

o ' a  = q-lao' 

02a = (1 - q,')bw' +am2 

w3a =am 

04a = q-'(q2 - 1)2aw' +q- ' ( l  -q2)bw3 +quo 

o ' b  = qbo' 

w2b = bo2 

03b  = (1 - q2)aw' + bo3 

w4b = q-'(1 -q2)ao2+q-'bw4. 
(4.13) 

The missing relations are obtained from those listed above by replacing a and b by c and d ,  
respectively. These commutation relations are (up to a slight change of notation) precisely 
those listed in [19] (cf equations (5.19) and (5.20) therein). Let us sketch how they were 
derived (cf also [16-18,5]). In terms of the matrices [15] 

the (Drinfeld-Jibo) cokutat ion relations 

of the quantum universal enveloping algebra se,(?.) (the 'quantum Lie algebra' of SLq(2)) 
can be written as 

R12L;L: = LTLlR12 R12L;L; = L;L,Rlz ' R I ~ L ~ L ;  = L;L;Rlz (4.16) 

if q # 1. The matrix 

q 0 0 0  
R = ( i  q-R-' 1 H 8) (4.17) 

is related to k by multiplication with the permutation matrix (acting on a two-fold tensor 
product). The exterior derivative is now expressed as 

d = T r [ ( i  4q)(:: :)(XI x3 x4 " ) ]  (4.18) 

where the matrix x of operators XK is defined by 

L+s(L-) = 1 - (4 - q-')X (4.19) 

and S is the antipode of sLq(2). The relations (4.13) and the commutation relations which the 
I-forms mK satisfy can now be derived from (2.1). the above equations, and the properties 
of the exterior derivative (see [19] for details)$. 

Q becomes singular in the cksical limit q + 1. Whereas the limit q + 1 exists for the OK, this is notso for 

See also [Z]  for a constmction of bicovariant differential calculi on quantum groups starting with the 'quantum 
0' and d. 

Lie algebra'. 
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4.2. A bicovariant differential algebra for SLq(2) as a subalgebra of a bicovariant 
differential algebra for GL,(2) 

There is another simple way to obtain a differential calculus on SL,(2) from a calculus 
on GL9(2) (cf [20] where the special differential calculus with s = 0 and A: = q-' 
is considered). Let T denote the matrix with entries a, b ,  c, d satisfying the GLq(2) 
commutation relations. Furthermore, let us assume that D-'I2 exists and commutes with 
all elements of GLq(2) (note that D is central). Because of (4.3) it has to satisfy 

F Muller-Hoissen qnd C Reuten 

, g K v - 1 / 2  = &~-1/22)-l/Z@K (4.20) 

where V is defined in (4.4). For this to make sense we must have V # 0 which means 
q # 0, f i  and we have to exclude the solutions = 1/(1+q2), Ai = -1/(1+q2) of (2.14). 
The entries of 

(4.21) 

satisfy the GL9(2) commutation relations and furthermore '6 =deb?  = 1. They generate 
SL&) as a subalgebra of GL,(Z) and the differential calculus can be restricted to it. We 
can introduce corresponding Maurer-Cartan 1-forms 

s^l 6 2  ( G ~ )  := S(?)df  

where N is defined in (2.24) and 19 in (2.26). To derive the last expression we made use 
of (2.25) and (4.20). It allows us to calculate commutation relations between the 1-forms 
e^K and the entries of T from the corresponding commutation relations of a bicovariant 
differential calculus on GL,(2). From (4.22) we obtain 

8 -  ^ K  - +V-1/2pKLgL (4.23) 

with the matrix 

(4.24) 1. 1 + (1 + V'I2)/N 0 0 (1 T V'f2) / (q2N) 

( :  (1 7 V112)/N 0 0 1 + (1 V'I2) / (q2N) 

1 0  0 
0 1  0 P := 

If we wite  the commutation relations between the 1-forms e^K and elements of GL,(2) in 
the form 

8 ^ K  f -  - & f ) ; i L  (4.25) 
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then we obtain 

6(f) = PO(f)P-’. (4.26) 

The homomorphism property of 0 thus goes over to 6. i.e. 

6 ( f h )  = 6( f )6 (h )  (4.27) 

and this holds in particuiar i f f  and h are restricted to be elements of SLq(2). S n c e  

(4.28) 

(4.29) 

d(; 6 ) = ( ;  ‘1 $2 

z d  2 d 6’ G4 ) 
$1 $2 

the differential algebra on GLq(2) can be consistently restricte o the SL&) subalgebra. 
In conclusion, each bicovariant differential calculus on GL, (2) induces a corresponding 
bicovariant differential calculus on the subalgebra SL,(2). There is no restriction of the 
parameter s except for the one mentioned after (4.20). A straightforward calculation now 
leads to the following result. 

Theorem 4.2. Let 4 # O,=k l ,  &i. In terms of the (SLq(2) Maurer-Cartan) I-forms (4.22) 
and the algebra elements i. 6, E ,  2,  D1I2 all bicovariant differential calculi on GL,(2) with 
the exception of the one specified by s = 1/(1+ q2), A: = -l/(l +q2) are determined by 

iKi? = (;A: + 6Cf)iL 

e^K; = (;A: +d^C:)iL 

$ K ~ 1 1 2  = &y1/2@12$K, 

iK6 = (2Bf + 6D:)gL 

JKd^ = (2Bf  + J D f ) $ L  

For the plus sign in the last equation the matrices A ,  B ,  C ,  D are given by (4.10) and we 
have to require q # -(1 f i4?)/2. In case of the minus sign they are given by (4.9) and 

0 

It is remarkable that the parameter s does not explicitly appear in the first four relations 
of the theorem, but only in the last relation$: In this way accordance is achieved with 
theorem 4.1. 

Remark. As a consequence of theorem 4.2, when p = q the parameters can be eliminated 
from the commutation relations of the ‘vector fields’ VK (generating the ‘quantized Lie 
algebra’) given in 1271. They are defined by 

we have to assume q # (1 f i&)/2.t 

df = ( v K f ) e K  vf E A. (4.30) 

i Our assumptions ensure that V # 0 and N # 0 so that (4.22) is well defined. Furthermore, P-’ exists. q # il 
is only assumed to ensure the ‘all’, cf theorem 2.1. 
I. It appears. however, implicitly through the relation between the GL,(Z) and the SL,(Z) Maurer-Cartan forms. 
Note that e^K = Q K  fors = s+. 
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Instead we may consider the vector fields 9~ given by 
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df = ( 9 K f ) i K  vf EA. (4.31) 

Their commutation relations are obtained from this equation by applying d, using (4.29) 
and the commutation relations which the e^K have to obey. Since the latter do not depend 
(explicitly) on s, the same must bold for the ?E?' relations. Also the coproduct of ?K 
(cf [27]) only depends on q. Hence we are in accordance with a result of Drinfel'd [31] 
(see also [32]) which says, roughly speaking, that simple Lie algebras have at most one 
'quantum deformation' (as Hopf algebras). The results in [27] for p # q show that such a 

U statement is not me for the non-simple Lie algebra gt(2)t. 

4.3. The classical limit of the s+ calculus on SL&) 
It  seems that the two differential calculi with s = s* do not yield the ordinary differential 
calculus in the classical limit since s* does not vanish when q -+ 1. In case of the s- 
calculus we obtain in particular BKa = -aBK for K = 2,3 when q = 1. This indeed rules 
out an ordinary classical limit. Let us now consider the s+ calculus. For q = 1 we obtain 

and 

(4.32) 

(4.33) 

where now t9 = 8' + 04. The Maurer-Cartan 1-forms defined in terms of the ordinary 
differential calculus on the classical Lie group SL(2, C) satisfy e4 = -8'. With this 
additional consfmint one finds that a ,  b, c, d commute with the O K .  In this way we recover 
the classical case. It has to be stressed, however, that the q -+ 1 limit of the s+ calculus is 
not the ordinary differential calculus. 

Remark. 
O 4  = -8' in the l i t  q + l? Writing O4 as a linear combination of @ ' , e 2  and 03, 
consistency with the commutation relations (2.9) restricts it to 

Is there a consistent constraint on the 1-forms O K  for q # 1 which reduces to 

04 = -q-lel .  (4.34) 

Except for special values of q this is, however, not consistent with the bicovariant differential 
algebra. For example, as a consequence of the last condition the expression 

(4.35) (e4)2 - q-2(e1)2 = -q-3(q - i)2(q2 + q + 1)8*8~ 

would have to vanish. 

t A Counterexample also appeared in [33]. The authors consmcted a special differential ulculus (which is not 
bicovxiant) on GL,,q(2) and the corresponding Hopf algebra generated by the vector fields, In terms of suitable 
functions of the vector fields. the commutation relations were shown to depend only on a single parameter. but 
the coproduct formulae depend on lwo parameters (see also [27], section 5). 
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In the following we will explore the s+ calculus on SL(2, C) (i.e. with q = 1) in more 
detail. Let x1 := a ,  x 2  := b, x3 := c, x4 := d. From the above commutation relations 
between Maurer-Cartan forms and a ,  b, c, d one derives 

[dx’,x”] =g’? (4.36) 

(4.37) 

(4.38) 

(indices in brackets are symmetrized). This matrix is degenerate, i.e. det(gPY) = 0, and 
satisfies g@”z, = 0. Using the relations of the s+ calculus, one finds that T satisfies dz = 0 
-and s2 = 0. Furthermore, it commutes with x p  and anticommutes with dx” (p  = 1, . . . ,4). 

One of the ‘coordinates’ xfi is redundant because of the constraint D = 1. Let us 
consider the subalgebra generated by only three of them, say xi where i = 1,2,3. Then 

where 
1 4  2 1  z := ‘19 = s,, d ~ ’  

g’“ = X P X ”  + 4  (s$s,y’ - sys:)) 

(t’) = ?(x , -x3, -x , x 3 

and 

[&,.j] = (4.39) 

with 

g i j  = x i x j  + 4~Fg j )  2 3 ‘  (4.40) 

Since det(g’j) = - 4 ( ~ ’ ) ~  = -42 ,  this is a non-degenerate symmetric matrix (a ‘metric’) 
if a # 0. The latter is just the condition allowing us to solve the determinant constraint 
ad - bc = 1 for d = x4. In (4.39) the I-form t is independent from the 1-forms dx’. 
Indeed, an attempt to express t as a linear combination of the differentials dx’ using 
x4 = (1 + x2x3) /x”  fails. The resulting equation is identically satisfied and does not tell us 
anything about 5 .  

4.4. Bicovuriant differential calculus on SZ&, R) 
The ‘reality conditions’ 

a * = a  b * = b  c ’=c  d ’=d (4.41) 

where * is an antilinear involution on A (which on complex numbers acts as complex 
conjugation denoted by a bar) is compatible with the GLp,4(2) commutation relations only 
when IpI = 141 = 1. These conditions define the quantum group GL,,q(2, R). The quantum 
group SLq(2, R) is then obtained from SLq(2) restricting q by 141 = 1, i.e. . 

4 = q- l .  (4.42) 
Assuming that 

(f dh)* = d(h*)f* ~ V f, h E A (4.43) 
one finds that the s+ calculus on SLq(2) is compatible with the reality conditions. In order 
to verify this it is helpful to first derive the relations 

(4.44) 3 - -183 
(el)* -84 (e2)* = 48’ ( 8 )  - 4  . 

Then one has to apply * to the commutation relations between BK and a ,  b, c, d ,  and use 
(4.41) and (4.44) to show that the resulting equations are consequences of these commutation 
relations. 

Let us turn to the classical limit (q = 1) of the s+ calculus and use the notation of 
section 4.3. We still have (4.39) with (4.40), but now the functions xi are real and g is a 
real metric on SL(2, R). 
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Theorem 4.3. 
constant curvature. 

Proof: g'j depends continously on xz and x3 .  det(g'j) = -4(x1)' is non-vanishing where 
x1 # 0 and independent of x2 and x3 .  Hence, the signature of g'j does not depend on x 2  
and x3 .  For x2 = x 3  = 0 the eigenvalues of g'j are -2, +2 and (x') ' .  This proves that g'j 

has Lorentzian signature (-, +, +). 

F Muller-Hoissen and C Reuten 

g is the maximally symmetric Lorentzian metric on SL(2 ,R)  with negative 

Calculating the curvature tensor of g we find 

Rijxe = -(gikL?jC - giigjd (4.45) 

which shows that we have a space of constant curvature. Now the statement of the theorem 
follows since the last equation uniquely determines a metric with given signature (see, for 
example, [34], section 13.2). 0 

Differential calculi of the form (4.39) on a commutative algebra of real functions (as in 
the case under consideration where q = 1) were studied in [35]. 

5. Bicovariant differential calculi on SU&) 

Analogues of unitary matrices are defined by 

where * is an involution of the algebra GLp,q(2). This ,means that we have to identify 

b = -q'Dc" d = Da*. (5.2) 

Consistency with the commutation relations of GLP,@) enforces 

P = @  (5.3) 

(where the bar denotes complex conjugation) and 

ac = qca ac* =@*a cc* = c*c n*a = ]I - c*c aa* = 1 - qqc*c 

DD*=]I aD=Da a*D = Va* CD = ((i/q)Dc c f D  = (q/@)Dc*. 

(5.4) 

These relations define the quantum group Uq,J2) as a quantum subgroup of GLp,q(2). The 
quantum subgroup SUq(2) [36] is then obtained by imposing the further constraint D = ]I 
which requires q = q ,  i.e. q has to be real. Two bicovariant differential calculi on SUq(2) 
were found by Woronowicz who denoted them as the 4 4  calculi [I]. It was recently 
demonstrated that these are the only bicovariant differential calculi on SUq(2) [lo]. We 
have shown (using different techniques) that also on SLq(2) there are only two bicovariant 
differential calculi. The 40+ calculi on SUq(2) are obtained from ours* calculi by imposing 
the condition (5.l)t. 

t In [lo] the commutation relations between 1-forms md algebra elements are expressed in tems of a set of 1-foEs 
n~ whicharerelaredtoours+ Maurer-Cartanformse' by521 =e3,  nz = -9e2. 523 = -(q/,/G&e1-e4) 
and Qd = &/(1+92)8. 
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6. Conclusions 

The main result of section 2 are the commutation relations (2.15) between the generators 
a ,  b, c, d and their differentials for the most general bicovariant differential calculus on 
GLp.4(2). In terms of the Maurer-Cartan forms, the corresponding relations are much 
simpler and were derived in [U]. The derivation of (2.15) became necessary for comparison 
with the results of Manin and in order to settle a question raised in [28] concerning an R- 
matrix formulation for the bicovariant calculi found in [27] (see the remarks in section 2). 
We have checked these relations carefully using the computer algebra software REDUCE 
P71. 

An apparent consistency problem for the calculi with s # 0 mentioned in [13] is resolved 
in section 3. An attempt was made in [13] to single out the two s = 0 calculi which admit 
a simple R-matrix formulation. This would rule out the 4& calculi on SUq(2) since we 
have shown that they correspond to the s* calculi on GLq(2) (see section 5 )  and this is 
precisely the calculus considered in [19]. 

The authors of 1201 mentioned that the seemingly obvious way to carry differential 
calculus from GLq(2) over to SLq(2) by imposing the determinant constraint D = 1 does 
not work. We have shown, however, that it does work if the right choice of bicovariant 
differential calculus on GL4(2) is made. It works for our y calculi. An alternative, but 
less direct way towards differential calculus on SLq(2) starting with the s = 0, Ai = q-* 
calculus on GLq(2) was followed in [ZO]. We have exploited this procedure in section 4.2 
for the most general bicovariant differential calculus on GLq(2). This led to our theorem 
4.2 which shows that the complicated structure of differential calculi on GL,,,(2) greatly 
simplifies when p = q .  

In conclusion, there are two different ways to ob& bicovariant differential calculi on 
SLq(2) from those on GLq(2): 

(a) We can start from the GLq(2) differential~calculi with s = si and impose the 
determinant constraint on the differential algebra (see section 4.1). 

(b) We can start from any of the GL&) differential calculi and restrict it to the SLq(2) 
subalgebra (as discussed in section 4.2). 

Both procedures lead to the same result in accordance with our uniqueness theorem 4.1. 
Among the two bicovariant differential calculi on SLq(2) only the s+ calculus has 

a reasonable classical limit, although even in this case we do not obtain the ordinary 
differential calculus as q + 1. We have shown in sections 4.3 and 4.4 that the resulting 
differential calculus for q = 1 is of the form of the deformed differential calculus (on 
a commutative function algebra) discussed in [35]. It remains to be seen to what extent 
the physical ideas in [35] apply to the classical l i t  of bicovariant differential calculi on 
quantum groups and beyond. 

The fact that the space of 1-forms is four-dimensional for the quantum groups SL,(2) 
and SUq(2) whereas it is three-dimensional for the ordinary differential calculus on SL(2) 
and SU(2) is usually regarded as an unpleasant feature of bicovariant differential calculust. 
The abovementioned relation with the work in [35] may turn this apparently negative aspect 
into a positive one, however. 

1 A differential calculus with a three-dimensional space of 1-forms on SUq(2) has been considered in [36]. It is 
not known whether this calculus can be characterized in a natural way in order to distinguish it from the many 
other consistent (and not necessarily bicovariant) calculi. 
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